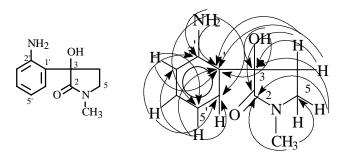
ALKALOIDS OF Arundo donax. XVIII. NITROGENOUS BASES IN FLOWERS OF CULTIVARS


V. U. Khuzhaev

We are studying alkaloids in flowers of *Arundo donax* cultivated in the Tashkent Botanical Garden. Total alkaloids were obtained by usual CHCl₃ extraction of dried and ground plant material moistened with aqueous ammonia (5%). Five decantations were performed. The combined CHCl₃ extracts were condensed and treated with H_2SO_4 solution (5%). Alkaloids were extracted by CHCl₃ from the acidic solutions after they were made basic with conc. aqueous ammonia. The extracts were dried and condensed to afford a mixture of bases (0.042%). Chromatography (TLC) of the total alkaloids identified three alkaloids with R_f values 0.1, 0.6, and 0.7 (TLC, Al_2O_3 , C_6H_6 : CH_3OH , 9:1) and 0.75, 0.80, and 0.85 (CHCl₃: CH_3OH , 9:1). Treatment of the total alkaloids with acetone separated crystals with mp 134-135°C, which were identified by R_f and mixed-melting point as the known alkaloid donaxine [1, 2].

The mother liquors from donaxine were chromatographed over a column of Al_2O_3 . Elution with CHCl₃ separated crystals with mp 178-180°C (acetone) that were identified as the alkaloid donaxaridine [1, 3] by mixed-melting point and comparison of spectra.

Signals for C atoms in the ¹³C NMR spectrum of donaxaridine were previously incorrectly assigned [3]. Therefore, we studied its PMR and ¹³C NMR spectra. The magnitude of the chemical shifts and the nature of the substitution enabled the signals to be grouped into aromatic and aliphatic parts. Table 1 gives chemical shifts of atoms in the PMR and ¹³C NMR and their assignments.

The HMBC spectrum of donaxaridine exhibits the following important correlation peaks: $CH_3/C-5$; $H-4a,5a,CH_3/C-2$; $H-4a,b,NH_2,OH,H-3',5'/C-1'$; $H-4a,b,5a,NH_2',OH/C-3$; $H-4',5',NH_2/C-6'$; $NH_2-2'/C-4'$; H-4'/C-2'; H-5'/C-3'; $NH_2,H-3'/C-5'$.

Continued elution of the column with CHCl₃ gave fractions that afforded a base with mp 148-149°C that was identified as arundinine [4].

Thus, flowers of *Arundo donax* contain three pure bases that are described in the literature: donaxine, donaxaridine, and arundinine. These alkaloids were isolated from the flowers of this plant for the first time.

S. Yu. Yunusov Institute of the Chemistry of Natural Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, fax (99871) 120 64 75 and Mukimi Kokand State Pedagogical Institute, ul. Istambul, 23. Translated from Khimiya Prirodnykh Soedinenii, No. 5, p. 424, September-October, 2004. Original article submitted May 31, 2004.

TABLE 1. Chemical Shifts of ¹H and ¹³C in Donaxaridine

C atom	δ, ppm	Proton	δ, ppm (J/Hz)
C-2	174.0		
C-3	78.7	OH-3	6.03
C-4	33.4	H-4a, H-4b	$2.44, 2.17 (J_{4.4} = 12.6; J_{4a,5a} = 2; J_{4b,5a} = 8.6)$
C-5	44.5	H-5a, H-5b	3.29, 3.00 ($J_{5.5} = 12.6$; $J_{5b,4a} = 6$; $J_{5b,4b} = 8.6$)
CH ₃ -1	29.45	CH ₃ -1	2.85
C-1'	124.4		
C-2'	125.8	H-3'	$6.675 (J_{3',4'} = 7.5)$
C-3'	115.35	H-4'	$6.46 (J_{4',5'} = 7.5)$
C-4'	128.0	H-5'	$6.97 (J_{5',6'} = 7.5)$
C-5′	116.1	H-6'	6.665
C-6′	147.0	NH ₂ -2'	5.21

NMR spectra were recorded on a Bruker AM-500 spectrometer at working frequency 500 MHz for 1 H and 125.8 MHz for 13 C in CDCl₃.

REFERENCES

- 1. K. A. Ubaidullaev, R. Sh. Shakirov, and S. Yu. Yunusov, Khim. Prir. Soedin., 553 (1976).
- 2. A. P. Orekhov and S. S. Norkina, Zh. Org. Khim., 7, 673 (1937).
- 3. V. U. Khuzhaev, B. Tashkhodzhaev, and S. F. Aripova, Khim. Prir. Soedin., 720 (1995).
- 4. I. Zh. Zhalolov, V. U. Khuzhaev, S. F. Aripova, M. G. Levkovich, B. Tashkhodzhaev, and N. D. Abdullaev, *Khim. Prir. Soedin.*, 790 (1998).